
AD-AI05 078 POLYTECHNIC INST OF NEW YORK BROOKLYN F/6 9/2
SOFTWARE MODELING STUDIES. VOLUME IV. A STATISTICAL THEORY OF C--ETCIU)
JUL 8 1 A E LAEMMEL F30602-7W-C RV57

UNCLASSIFIED POLY-EE-80-004 RADCTR-81-183 VOL-4 N

RADC-TR-8 1-183, Vol IV (of four)
Final Technical Report
July 1981

SOFTWARE MODELING STUDIES, .

A STATISTICAL THEORY OF COMPUTER
PROGRAM TESTING

Polytechnic Institute of New York /

Arthur I. Laemmel

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DTIC
EECTE

aOCT5 i981j

ROME AIR DEVELOPMENT CENTER A
Air Force Systems Command
Griffiss Air Force Base, New York 13441

I0.

*jmf

This. repbrt has been reviewed by the RADC Public.-Affairs office (PA) and
is reJ~asable- to the National Technical Information Service MNIS)., At NTIS
it will be releasable to the general public, including foreign nations.

RADC.r#-81-183, Vol IV (of four) has been reviewed and is approved for
publication.

APPROVED:

ROCCO F. IUORNO
Project Engineer

APPROVED:

JO J. HARCINIAK, Colonel, USAF .

Chief, Information Sciences Division

FOR THE COANER

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if yous wish id~be rimovba from 'the.wUt~.
sailing list, or.if X10 addresse ip no longer euiployed.-by yoqt prganiza1tion,
plasea notify LADC.(IsIE) Griffis* AWRNY 13441. This will assist us in
maintaining a current mailing list.

Do not return this copy. Retain or destroy.

C I '.ASS 1 F Pf.~ 1/. 1).

SEC,$,~ 'CA"CN :)F T'- PAGE When Datim E,-.,ed)

PAGE READ INSTRUCTIONSREPORT DOCUMENTATION PAEBEFORE COMPLETING FORM
I EPCR' NUMBER 2. GOVT ACCESSION NO1, ;MCiPTINT'S CATALOG NUMBER

PALUC_4i-81-183, Vol IV (of four)' j L-. .

TITLE land S.butl.) ,'S. 'VPE OF REPORT &PERIOD ieO')EREO

L- SOFTWARE MODELING STUDIES * ' 'Final Technical 1Repmrt
_4 STATISTICAL THEoRY OF COMPUTER P RO G.R.-VI JanIA&VVR~N 78 G -OcIRT 8
TESTING .~RPR

frEE- 8-004
T. Auvi4Owts, X5L._Z. .- TRAQT (I GRANT NUBR,

f Arthur E. ia m'' 30602-78-C-0057,

9 PERF'GRMIN. ')qGANIZ STIZN ?4AME AND ADDRESS *. D RO3;RAM 5L EmEN ROjEC: 'ASK

Polx'teein i. .1Inst ituteu of 1Nuw York *~AIRR h -JSR

33i Jav ' Street
Bre.okl':n 'Y1120] 2!s1

1. ':N'OLL ' 2 CE -4AmE AN.D ADDRESS : -

Rome Air Development Center (ISlE) .111 19MBE OF I . -S
Grfi :Ass AFB NY 1'3441 13NME O kE

IC 4~ ~ , F- , -M' E A ACORESS(if d'it-rn' 'Sno~, 9fc 5SEU-RIT' -- ASS rhI

Samca : UNCGLA SSI FI E 1
/ /Ise. OE-LASSIFICA'tICN DOWNGRADING

6. DISTRIBU-3,. " ArEMENT '.1 IhHp ,

Approved or ptil I i ' rel ease; d ist;r i it irnl 1111 im it c

17 DISTRIBUTION STATE MENT .1 !he aberetC enterd :1 13:, k '0 1 diff--et !r-~ Rop.rt)

S a,- e

8. SuPPt MENTARY NOTES

RADC5 Priccjt Liing mor: Kocco F'. limorno(

19 K EY NR D$ 'Continue on ,.v.,s side .1 necossary and identIty, .. v black-"mber,

Prog rai T-;t. ing Program: !'.rrs
'eLost ig S L rat e gy Rn esn
P'rohbabilitv of FailureSonI' rr>lO,
i'rogram Correctness

V 2D A65ST AAC Snntaon reverite 9id. It n-ce-at and :deprty b, biock numberI

Program ising, is studied for maximizan', ther.t ~ -)lt of morpater
proprram:. . Several Fornmulas are derived to c:nti:it the 11111,11'r 01 tests

rt ire(' to say that a pro,-raim being tested ' ri,,.t With aI 2'Ln
I ,. '.)L1-ltC'ie', LO SLe.CLt i muSe tO I . , wh:1ich 1::ll imi 'A. thle

St: v: 0!)rog ram cer ro r wh il -u 1:m :1:' 11rA Of t L'a f i:.t'd ar IC

DD i2- 1473 ED.lION OF 'NOV1 65 S OBSOLE-F 'L SI 17171)
~ AS~flGN '2F 7HS PALc WN., ,a n~~

1_7 AL

TABLE 01' CONITNTS

\ Os l.l -t

I .0 Introduction I

2.0 l)(finitions and ()biect.i ,es 3
2.1 Defin itions 3
2.2 Object.ives 3

3.0 Models I
i [.lementarv Model 4

3.2 Model with lnequal Probabilities 6
).3 Model with Sttlistical Dependence 8
3.1 Illustrative Sfpecidl Case 13
3.5 Optimum 'lesting Strategy (in Section 1.) 13

o Interpretation of "Bugj" in [he Last Model 16

4.tU Random 'Testing 17
4.1 Random Test Models 17
4.2 (plimum Testing Stralegy Iin Section 4. I 22

5.0 Alternlive I)efinitions)I .rtor 2.3

6.0 ConcIluSIOnsI C10(OmMen' 1 2t

7.0 Referencts 25

V...

LIST or FIGURES

Figure 1 Plot of Pe vs. W from the Model of Equation 2 5

Figure 2 Plot of oji 11
Figure 3 Bug Covered vs. Number of Tests 15

Figure 4 Probability of Error vs. Number of (Random) Tests 20

Figure 5 Specific Examples of Error Probability Curves 21

iii

A S'IAl'ISTICAIL THEORY OF COMPUTER PROGRAM TESTING

Arthur f. Laemmel

Abstract

Most computer programs are tested with some of the possible sets of
input data, but few ('an be tested with all possible input data. Passing
such a partial test cannot insure ihat the program will always function
correctly; we can perhaps say that the probability of failure is less than a
specified amount. It is the purpose of this report to derive several for-
mulas for' the above probability. Aiso, in some cases an optimum testing
strategy can be derived which minimizes that. probability of failure.

iii

1I I lrud L(I loll

There are three mtho ds tor inaximi/.iniJ the reliability of computeI'
p rog ramIInS: (I1) use a systematic proced tre which makes it difficult for
errors to occur during the writing of the program, (2) prove that the
program works correctly by some formal oi- aut-omat-ic process, anid Ci) test
and debug the(prog ram thoroughly betore. passing it on to tfle user. Mos t
programmer's will use some comb inati ion of" these mc t-hod-,, and In tact some
procedures involve ulemlh ; of'0 more t han one- mne! hL I -e present re port
emphasizes testing , bh ii IS some remarks %%Iit heL ma~de ablout p iouram
writing and proving.

(I Writ ipg Correct Prog rams : W hi)le no un n lent rona fliv inserts
errors in is program~ it is Undoubt II% troU; [hot mainy
people would produce more retiable prog r-m-1 \%i n less et tort
it they were taught better pro(grammi no techniles . How-
ever, it seems obvious that the averai --e programmlier 001ho(1
!(-;t. his progjrams even if' rie exercises 11W maximum 01 (,.ie
a nd uses t Ih, hi-t techn iqgues.

F: ovy I rrog ram Correc tness. T here are s v e r >1 I reasons5
V\0V a forMal YJ&Jicedue -for proving program correctntrh'55

ba o e r,.tied on to insure: absence of krr'ors In prod idatd
Li itions : Ia uniform alglorithmn lt r loving t he cor-

red ress of an ,rilr~ ary prog ram can be shown to be In)-41
pos-sible, being esqnilyeuivalent to, Turing's halting1-
problem; (ii e-ven lori>v ihle suib-c>s;,:s "4 the correct-
ness- proving problem, the o soil met hod (some improv'ement
on I lerbrand search) is su time consuming as to be umprac -
ticat ; (iii) there is alay) possibility oi e.rror in the
prov ,Ing program, or in pplying it. to, the program being

3)' !estin g Computer Prog rams : It- Vi(\ i e01 IIhe dti f1C iICS 01
valikdhfing -a com-pu-ter program by 1protiraimming t echniques or'
formial p roof' methods , it is bet, aI tht some(ml-ount of

!rslinq w l ways he necesam. re 1 ti
repIOr't is to describe a model %i -2> o\ I ti r(' i its 'ship.
bel, -,!en errors of different type.- mJ the prcoabililv thati
they %%Ill cause a program to fail, Aod ailso to suggest op-
I m (Im teost ing(methods which m :111iz11 t hirah i) ot'
prag 'un failure.

throughout this r'eport. it is aissumed Ilh~t d IWpn Om r'uram caIn be
tested and that it, will eit her pass or hut) the tes! t IS is lsO assumned thait
a, tester and aI user will in tirp't hlilUT Ofr 01the J.! it III \((l II\ hf :;am
way. [% or~ exaimple, tailure might meain onec at I K i(~xn

hr progra [WOrnfs'l oompltely.
1005t\'i ViidIj u'u5sMA is kil'i''.

'Llf itc I ; -

iv) the numbers are correct, but the format is wrong.
v) the program works perfectly, but a side effect causes failure

in another program.

It must also be decided whether the program alone is being tested, or
whether the program and algorithm is being tested. This report is directed
mainly to the latter, but the results can be suitably interpreted so as to
apply to the former.

The extent to which a computer program (possibly including the under-
lying algorithm) can be tested varies from application to application and is
usually not a yes - no situation. Whether or not a statistical model applies
to a particular case depends very strongly on the tester's knowledge of just
what answer should be produced by the program. Some of the many possi-
bilities of the user's prior knowledge of the correct answer are:

1. The exact answer is known beforehand. An example would
be a math package for a new computer. Accurate tables of
cos, arctan, log, etc. have beer available for many years.

2. A proposed answer can be checked to see if it is a correct
answer, but the correct answer is not known beforehand.
Programs which calculate the roots of transcendental equa-
tions are examples of this category.

3. Answers for certain special input values are known before-
hand. This is very common. For example, if a program is
supposed to output the capacitance of an arbitrary two
conductor transmission line, it. would be natural to test it for
coaxial cylinders.

4. The answer is not known beforehand, nor can it be accur-
ately checked for any combination of input values. How-
ever, certain consistency relations among different outputs
are known. For example, it may be obvious that the pro-
gram should generate an output which is a monotonically
increasing function of the input. A test which detects a
decrease indicates an incorrect program, but no amount of
testing can indicate a correct program.

5. Absolutely nothing is known about the answers which should
be produced. This is probably very rare. Even here, the
theory presented in this report applies if the program
"bombs," i.e., a fatal or non-fatal run-time error message is
produced.

The identification of an error is often not unique. This is illustrated
by the fact that error messages from a compiler or run-time monitor can
direct, the user away from what he considers as the error. For example, if
the compiler says "line 15, operator missing" the error might really be "line

-2-

H, n-tit-eni Lecmi na toi iiss ing. in many cases the syna flLXcan be cur1-
lr(ed in sutural'd places k) g]et Lthe prcog ram h ru the compile stage , but one (

place usually contLains thre rvported error, and another place is usually
wvhere the error should be corrected Simnilarc comments can be made about
semunntic errors detected at run time. In some cases an error might equally
well be lorrected in one of several places . ror example, a commnn PLA
error might be cor'rec ted by either declaring 1K to be a FLO)AT number by
usingo N K instead, or by crmci ng a necessary type conversion . This type at
ambig ui ty in defining the e.rror is not believed to cause any difficulties with
the lormLas developed an this r'eport, provided the parameters are in -
terpreted correctly.

2.0 t)lefin-itions and- Objectives

2. 1Definitions Some basic aspects of the t eiff 1 e pocess apply equal-
iv w",el to I co-mputer pr og ram or to a physical dFiotr Lb is reason the
p rog ram or d ev ice being tes ted "il sometimes be,(called Lbhe macl(' I e ftr
the m,!Vl& has been constructed, it is chocked by a testei and then em-
plov. ;i user. [n, pi ababillty of error , % hich occurs ducing use

e I'l Li

wNh er e lI !s the probabilI that the tester misses all of the residual bugs

in the md, ant 1) U i; the [pro) ,bit.y that the user then encounters one

of the overloked bugjs. If exhoi L- v, testing is possible then P'I 00
since it is a,,sUmed that it a bug is found it then is corrected and the
whole process is started again. In most cases of interest exhausbive testing
is not possible or practical. If there are no bugs then all of the probijbilk
ties ace mero and this possi hiii ty appears as a special case in the a n vys is
to follow . Some alternate dIefi ni tion s of "probability a enrro are given in
Secton

'Ye t i\ %' Peore presenting, thK i oe m ; c J r~
ble r!t~ectives of ibis ,-,oik will be stated e xplr.itillv. ivoolthly, the(

dlm~ ie to Provide an estimate of Lhe numI)ber of' tests require1d to siv
hint the program being tested is correct w~ith a given probabillity, and to

provide a strategy so that a given [lLMcbvr (A iUMt di chosen most etfec-

[to Firm objective is met by deriving a foe(I ;el t *fhpb\e
:hc number, at tests and the probability af ei rl Ik [' ., k',em

bhilit es for dlefining probabihly of errors, the w: ioei ti i e might be-
t1 cd thn' "aroba-bility ot kwbrasmn 11(,V~. ~ tetr is not

i) he discovers a bug and returns the program to the writer
ii) he approves the program in spite of its having one or more

bugs, but the user does not. encounter one of the remaining
bugs. The tester is embarrassed if

iii) he approves the program and then the user encounters an
undetected bug. It the model is designed appropriately, the
probability of error decreases as the number of tests is in-
creased according to Eq. 30 below.

The second objective is met by choosing those tests which minimize the
expression derived for probability of error (defined as above) while keeping
the number, of tests fixed. Specifically, the principal question which must
be answered here is: should testing be concentrated on input data combi-
nations which are most likely to be chosen by the user', or input data
combinations with a large a priori probability of causing program failure?
The answer is that tests should be applied to both of these combinations of
input data in a ratio which can be calculated from tEq. 33 below.

Actually, several simpler, models are also analyzed before thal oes-
cribed by Lqs. 30 and 33. All of these expressions contain many para-
meters, and curves are plotted for selected values. No real Ita were uscd
tor the parameters, but. this should certainly be done in the future.

3.0 Models

3. 1 Llementry Model A simple case might. be the following: The
module has- possibl-e-input values, and each of these are equally likely to
be chosen by the tester or by the user'. O1 these input values, W cause
improper functioning of the module, but neither the tester nor the user
knows which inputs cause errors or even how large W is. The tester
chooses t inputs at random without keeping a record ot inputs previously
Lested, i.e. , sampling with replacement. Under these circumstances P.

W/1%, Pm = (1 - W/N) and

W t -W t 'N (2
H- e

e N 1 N N
A plot of P vs. W is displayed in l'ig. I . If the testing is to do any

e

good, i.e., t.o reduce P significantly less than W/N, then it is necessary
that

t-> (3)

In many applications it is found that satisfying the inequality of Eq. (3)
requires a very large number of tests t, and that our intuitive feeling is
th,it PC is acceptably small in spite of testing using far fewer tests than

indicated.

-4-

Pe pc = ERROR PROBAB ILI'

N =NUMB[ER OF INPUT
VALUES

W =NUMBER OF INPULlT
VALUES CAUSING
NI\iFULCTIOINS

=. \LNBER OF INPU VIS
VESTED

W0=WORST VALUE (O1 VN

0 IN N w

16L! 1. PLOT 01' P) VS. W FROM THE MOD LI Of' EQUATION 2

It wvill continue- to be. , ISSuMed Ithat the tester passes flu information to
the usc'r' about which inputs werec tes ted . It wil Idaso be assumed that each
lest either' succeeds or, tails and th(A thore is no Adtitiofl Iin tormalion
which would per-mit. sequentilal samipi r methods. Sampling withoul replace-
ment would slightly lower, P t~o

In

p()
I0 t >N-W

Note- that this method requires tha-t the kck. I,,(K. rec inpu)Lts
irendvted, or that. he avoids duplication Iby o her' meains.

I' he partic u ar type of error to 0wh h I'- per-t ains must IOc borne in

mind to a void confusio-n with othier' poe';s rle d efin itions of ei n-or . It W=N aill
inputs to the module cause matlfunctions but PC accor'd in g to E~quations

2) and ('1). This is true be cause the teCster' re'HVeAS userT hugks with each
tetand continues until all1 tests ar'e exhaiusted. I n t his., ee theteer

wisrejects the module (provided only thadt t 0) od s,, !he user' c innor
experience ai malfunction. Notec that I,(' is neilht h 1er' I lb'uhlility 1se' hS

a mllcut irnor' the pr'obahility 'user' h'as .. c: c(W ifi V~r ccepts.
mod1;,: Rather', P1 is theC pr'ohahbi li1tIS n :n~I' m nd Ctestr

a .e. t~ile It t11 he rri'be' Ot c-It,; H ~'1 i tI i rh 11 , o
i 'l, done, ffi(11 the Vi,1u1.111.0%

N (5)o +

From Eq. (5) or Fig. 1, it can be seen that as W - 0 then P -0 also.
This is so because for small W there is a small chance that th usec will

encounter a faulty input. Similarly as W - N then P -0 also because
there is little chance that the tester will accept the module. Of course, the

last case is undesirable for reasons other than th value ot Pe, i.e., the
user has a small probability of receiving a released program.

3.2. Model with Unequal Probabilities The model described in the
precedFig section is too simpliei to - y to most practical testing situations:
some inputs are more likely to fail than others, and the probability of one
input failing may not be independent of another input tailing. Often a
single bug may cause many inputs to fail. The tester may not choose the
inputs to be tested randomly, but rather in such a a 1y .s to utili/e his
knowledge of the prior failure probabilities. The user may not tLe free to
choose more reliable inputs; in fact, he may be constrained by the problem
to use less reliable inputs. The model to be described here inciudcs three
events, the last two being independent of ueach other but dependnt on the
first.

(I) A programmer constructs a module which has an error pat-
tern u with probability P(u). a might be a binary vector
(a , (. " YN) with Yi = 1 meaning input i fails and Yi = 0

meaning input i functions correctly.

(2) A tester tries certain inputs to the module and accepts the
module with probability R(accept I u). The tester passes no
information concerning which inputs were tested to the user.

(3) A user selects one of the inputs and the mud Lie tails with
probability Q(fail I a). The error probability defined pre-
viously is now given by

P = P(a) Q(fail I Y) R(accept I u) (6)e A

where A is the set of all possible error , r.

Vo illustrate, if there are N input vaiue.: then A consists o1 2 ele-
ments. Assume P(u) is 0 for all A excep lot !.h first w:

CiW I Il , j.] 0,0, .. 0) (

W . N- W

-6-

and let the probability of the user selecting input i be q,. Then

W

Q(fail YW = 2 qi
i=]

Assume the tester selects his inputs randomly, choosing input i with proba-
bility r . * Then

R(accept I aW) (1 - r.) (7)
j=1

W WPe 2 q.) 1-1 (1 - r
e i=1INi j=1rj

If qi :.I/N and r. tiN this reduces (approximately) to the elementary

model given above:

w t)w
Pe = N (I - (8

Another, tore useful, form for P() than Lq. (Ga) is obtained by assuming
that the i input malfunctions with p)obability pi. Then

N u. 1 -u i
P(U) fl pi (-pi)

N
(,(fail 1 (1) 1= Ujq

N
R(a IU) t= (1 - r

The formula also applies if r. is given t.he interpretation "input. i is tested
and the response is noted to be wrong by the tester." Specifically r =)

might. mean either that input i was not tested, or that it was tested and
an error was not detected.

The two products can be combined in evaluating Pe.

N N
p _ 2 _ ... > _ ujq 1 i (u
e a1 U 2 UN i=1

where
Ii i 1 -1

['(°i) = i (1-Pi)1 (i (1-ri) i

This reduces to

N N Pi(1-ri)
Pe = [1 (1-pjr.) q- --. (9)

j=1 -pj i=1 1-Pir.

It the tester selects t inputs determini,;ticaily, od it the inputs are per-
muted so that. these occur first, then

t N
P H (1-p Piq i (l()

S hiW i=t+l

An optimum testing strategy is obtained if the inputs are permuted so that
the expression is minimized. The first factor suggests testing inputs with
the largest pi, but the second factor suggests testing inputs with the
largest piqi. Let the above expression be abbreviated as Pe = PmPu and
note that. Pu is the probability of the user getting an error on an untested
input. Consider the effect. of adding one more input to the test.

Let

Ie = m(1-Pk)(Pu-pkqk)

S (qk+Pu)Pk

e e p)u

'I hus, the criterion is to select the input ,,uit.h the largest

(qk +)u)Pk ()Pk
As can be seen, this provides a weighted compromiIc l.,N'tct_: , lOrction -
the basis of pk or q kk alone.

:3.3 Model with Statistical Dependence Computer programs usually
tail lor I whol fet. o input values as a result. ol a single bug . It is more

o' F n- asingl -8-

m
.... -

realistic to assume that failures due to different bugs are statistically
independent rather than failures for different input values. For example, a
single oversight might cause a square root program to fail for all negative
numbers. Let

I 1 if the ith bug causes failure for input i

0 it the h bug doesn't affect input I

If is the probability of the jth bug, if N1 is the number of possible bugs,

aid if 0j (j = 1,2,...,M) is the pattern of actual bugs, then (note defini-

tions of P, Q, R in the probability of event statements (1), (2), and (3) of
Section 3.2)

P = I P(O) Q(f I 0) R(u 1 ') (12)
0

This is analogous to the corresponding formula in u given above. Here,

.i EO, 1-0,
P(O) = 1 (1-P i '3

i=l

Q(f 1 0) 2 i k=l1 1- jkIk H (13)

M N
R(a 11) I tf (1-r) i i

Combining and rearranging gives

N Ni
f . qj 2. Aj(0 1 , 02..., OM) H F (0i)

where

0 .)l O N a i i

Fi() (1-V) 1 (1-r.)
k=1

and

-q-

M

Aj(61'.... , M) - 11 (l-ajk'k)k=l

The summations over 0i are for only two values (0,1) and can be carried
out to give

M N Pi N M N 02iP e=rl [1-Pi+pi f=11 (1 -r)]-2 q.i fll 11-0 1i+(1 -jil)pSi, " H (1-r o) (14)

j=1 2=1 j=1 Ji=-kl

If deterministic testing is used (r=0,1) over, the first t inputs:

M N M[= ' (1 - i) _ q I I- n " I - J i
ej=t- I-

Where [H' refers to a product over terms involving a value of i such that
Cvi = I for at least on, value of j in the range j - 1,2,... , and where [I"

refers to the other valces of i. The bug.s can be permuted so that 1 < i <
T implies cyi = 1 for at least one value of j from 1 to t and T < i < M implies

aji = 0 for all values of j from 1 to t. Then

M T M M
n' = I and [I" = 11

i=1 i=1 i=1 i=T+I

The problem is then to minimize

T N M
(' 11 (1-0j) 2 q. [I- 1 (1-aji[i) (15)

=l j=t+l i=+1

A graphical interpretation of the above is portrayed in Fig. 2, and
illustrates how different inputs excite various bugs. For example, input 2
excites bugs numbered 6,7,8 and 9. Bug numbered 8 can only be dis-
covered through the application of inputs 2 or 4.

A clearer picture of how P depends on the amount of testing, t, can
r e

be obtained by deriving an upper bound from Eq. (15). For most cases of
interest this upper bound will be tight, i.e., a good approximation. Multi-
ply thru by the first product in Eq. (15):

-10-

INPUTS(j
N

1 2 3 4 56

2

44.

6- -11 HESE BUGS
ARE

0 COVERED
BUGS (i) BY INPU7S

2,-

FIGURE 2. PLOT OF oj

N T M
Pe -(1 if -i) - Il (-Yiii)(

where

'Tj T < i < M

Now observe the follo\\ing:

- I -(1- (1-1) since <ji < 1

N t~1

2 q j - Q .) < I (n o te Q (t) I 1I. . if q j =

j=t+l

T
- 2 13.

i- (1- e

Combining these:

T

Pe< P e -R (17)

where

M
M - i 13i

M i=l

Ro = l (1- i) e
i=1

From the way the ji matrix was permuted, it can be seen that I -* M (mono-

tonically), and from Eq. (16) these, in turn, imply Pe " 0 (monotonically).

-12-

It Eq. (17) is a good approximation to Eq. (16), then the rate at
which Pe -0 can be seen to be exponential.

3.4. ,L istrati.. Special C3se A simple special case i!! illustrate,
. above for'uias and is Useful in getting a rough idea of Lhe number of
oe;ts and the probability of error. Suppose that each of the M buns occurs

Iwith the same probability of error, P, and affects the same number of input
)Wvatl, t. Suppose furlhr that the pattern of input errors is the mol

oitticull to detect with the given number of tests, t, i.e that !hp et ror
subse, , are as "disjoint" as possible. If the iests are distribu'ed fL , i
eiic,.,1,eiy ovet, tht- inputs , each LCA ' ill Jetecl Nlb/N bugs c.Tirw L.1rLing
wi1 rEsult ir. 'A1 Mbt N r:dJtc',d hugs , and T MbtiN (ass,,nimq
bt NI. Thus

-) -11113 -oM, ,

I - tm
' i T,

o - o in u se e

'- , o I .4l -l p . .

more (Jenerafm. .~m o.nerr'ig ti V~r~ . W:, w '! a.
choice of tests, t might be a much smaliei traction of N,.

3.7, Optium Testinq Strategy (in Section 3.3) For a given , h,

;ct 6-o-] iput i6TL Tes-ed-Tich minimizes P will be defined as zh,
optimim testing strategy. From Eq. (15), and intuition, one migqht be
tempted to test the t inputs most likely to be chosen by the ,r, ;
minimizing the factor 2q. However, for most cases of interest, thi;:s,-
;roach would be futile. If the qj arc! even very roughly equal, he nur

i. ...sible inputs N is sc hiqe that it would be impossible t.o test enourh-,I Inem to redlue

N
qj

t.+1

:<;nificantly below% 1,rnit.y. Lssentiallv, the q, only influence th, Uei.,K-

,I,atvq, thr,, the fact 1rat the square bracketted term in Eq. (15) de pend-,

The first term in F.q. (15') is the most important for values of i,
:irailet(er's ot most interest, and as was shown above, it is minimiied ap-
:."'ximately) by choosing test values to maximize

- 13-

11 = I.)b (1 9)
i=1

T~ if (19b)

1i1 l 1 1i , k.ual, P i then minimi/.ed (approximately) by maximizinq r

This is ussentially the covering problem of switching theory and operations

research. t'2- A set of inputs i F I is said to cover a set of bugs j F, J if
Uji = I for every j in J for at least one i in I. Referring to Fig. 2, input

4 covers bugs 3, 4, 5, 6, 7 and 8; and input pair 1,4 covers bugs 3, 4,
5, 6, 7, 8, lo, I I, 12 and 13. These inputs are optimum in that they
cover the mosi LUc, possible. Thus, using these optimum choices, T = 6
and 10 for I nd 2. lto\\ever, the optimum set. of 3 inputs is not
obtained by ,ddingj that input which would cover the most additional bugs.
Inputs 1, 3, 4 cover, only 12 bugs, but inputs 1, 2, 3 cover 13 bugs. The
covering pioblem is usually stated as minimizing the number of tests re-
quired to covur tll bugs (in the present terminology), and no general
algorithm tur its solution is known. The process described above, repeat-
edly adding that test which causes the greatest increment in bugs covered,
is usually referred to as the "heaviest-first algorithm."

A sketch of T vs. t for the present example is shown in Fig. 3.

Note that the number of covered bugs added at each step is a de-
creasing function of t. If t is very large, the bugs being covered might
be those affecting only a single input, such as divide-by-zero bugs.

The rate of increase of Pe with increasing t is certainly of great inter-

est, and one simple functional dependence can be given using the aboveideas. Define T1' T 2 "'". as those values corresponding to t=1,2,... when

optimum or near-optimum testing strategy is used. Eq. (19a) can be re-
written

T t

E t i = I BK t20)
i=1 k=1

where

T k

B K 1 +- Pi' , T 0

From Eq. (15) with the second and third terms approximated by unity, or
from Eq. (17) with R0 approximated by zero:

-14-

OP I IL

TESTSS -FR T

112

- .,, , - . -: .. Tr -' .- ."7 < 7. . . *
* t .

ot = '-r.... 7.: -.°7T -17 -

2 U)

Pe(t) - I (21)

Now it Bks assumed to have a form which is a decreasing function of k
and which cin be linikely summed in closed form, a convenient relation can
be found. !'or example, if Bk = c/k

t

I -K .5772c + -jnt
k=l

Pe M 2c (22)e ~ tC

This shows what might be expected in practice, a gradual decrease of P.
over many decades a, t is increased over several decades. When some
relations are plotted, eg. Eq. (2) or Eq. (18), they exhibit very sudden
and deep drops in P e when certain values of t are approached, and this is
not the behavior to be expected except in the simplest programs. Of
course, Eq. (22) does not have enough parameters, but similar formulas can
be found which do have enough parameters.

3. Interpretation o a Program Bug There are many possible waysto int[erpr-et--a- c_ ---.

1. Formally, a bug is simply a subset of input values which fail
together when the program is used, e.g., the region B2 - 4 AC < 0 in
solving a quadratic.

2. A bug might. be a careless typing error, such as A+B instead of
A-B.

3. A bug might be an incorrect statement or a defective subroutine.

4. A more flexible definition of bug should allow such ti:Ygs as
omitting a check for dividing by zero. These bugs of omission art- harder
to handle with fixed NM and matrix oji.

5. A bug might be defined as a distinct path thru a flowchart. A
popular testing procedure is to run at least once thru every such path,
and if these are the only bugs included, this constitutes a complete cover
and Pe = 0. Unfortunately, the model would then not. be very realistic
because Pe would never actually vanish except in the most trivia, programs.

-16-

6. If programming can be identified with decisions, a bug is a wrong

decision.

4.0 Random Testing

4.1 Random Test Models Some of the difficulties involved in relating
the n-miber ofbF--gs discovered and the number, of tests made can be avoid-
ed if the tests are chosen randomly rather than deterministically. Optimum
strategies can still be found if the probabilities of choosing the inputs to be
tested are not equal. The probability of error Pe for random testing has
already been found in Eq. (14) above. Let s be the probability that the
tester chooses the 2'th input at any particular test. If the number of tests
is t, then the probability that the Qth input is tested during the series of
t tests is

r = 1 - (1 - s) t 23

Note that the s, sum to unity, but that each r£ can rang- from zero to

one. 1I is helpful to define

N oY
A. = (1-s) (24)2=1

which is the approximate probability of a single test missing the i'th bug.
Note that Ai is certainly no greater than unity. Fq. (14) can now bo
rewritten in terms of s, A and t.

M N M oi-t

P e(t) in (1-l+jpi) Ilqj [1- t A (25)

As the number of tests is increased the probability of error approaches
zero

Lim Pe(t) = 0
t-,-

If no tests are made

N M
Pe (0) = I- qj B (l-oji) (2f()j-

i=1

It is easier to see the importance of different terms in Eq. (25) by examin-
ing the asymptotic form for large t:

-17-

M M ~i (i~l.(27)Pe(t)) I] 1-j~h) iA (7

h=l i= I -

where
:N

q' jl- qi ji

The quantity Qi is the probability that the user encounters an error from

the i'th bug. Since each s. is very small an exponential can be used to
express A:

N ,>. -S.
Ai = ri (,i-- ;- J = , 28)

where

N 1
Si = kj, 2 sk C'i I < -1 < 29)

max

Note that if the tester uses the same probabilities as the user then

si= Q i. If this assumption is made, if the 0 are small, and if Qi takes on

only a few distinct values Q1 , Q2"". Qn, then the asymptotic form of
Eq. (17) can be approximated by

n -Qkt
Pe(t) z I OkNkQke (30)

k=l

where
Nk is the number of bugs with a probability of discovery Qk

(These bugs which have probility Qk will be called a "block".)

and

Ogk is the average probability of bugs in the k'th block being

introduced by the program writer.

No loss of generality is obtained if the Qk are arranged in order of

decreasing magnitude. Eq. (30) clearly represents a decreasing function ol
t, but it is not so apparent that the decrease is more than 1/t than expo)-
nential over the range of interest. To see this, note that each term in
Eq. (30) reaches a maximum as a function of Qk at Qk 1/t. For each

-18-

t a certain term in the sum will be dominant and values of k both larger
and smaller than this dominant term will contribute relatively small amounts.
This leads to an approximate formula

1e(tk) tke
k

where

1
tk- Qk

If the product PkNk is approximately independent of k, then Pe will de-
crease approximately as l/tk. The decrease is exponential belo\ t1 '

'mmn
but this value could be very large indeed. For example, if the input is a
32 bit number, and if a bug causes an error for a single input value, then

Qmin = 232.

Such a bug would be very hard t.o detect by random iesL11g, but by
the same token it would be very unlikely to cause a user error unless the
user favors that value for some reason. The behavior of Eqs. (30) and
(31) is sketched in Fig. 4 and Fig. 5.

Fig. 5 shows the way in which the probability of error Pe decreases
with the number of tests t. The parameters were chosen to illustrate tie
following cases:

i) P e decreases slowly at first, then rapidly
ii) P decreases gradually throughout the rangee
iii) P decreases rapidly with the first few tests, then many

mre tests are required to obtain a further decrease.

As might be expected, in case (i) above most bugs are difficult to
detect, in case (ii) bugs are evenly distributed, and in case (iii) bugs are
either very easy or very difficult to detect.

Program bogs have been divided into four, and in some cases five,
classes, indicated by k in the following

(1) is the probability of detecting a class k bug

1ik is the probability that a user has introduced a class k bug

Nk is the number of possible class k bugs.

-19-

0 tI

IL.

o
CLe

tsNME O ET

FIUE4 RBBLT 1 mORV.NMFR(RNO)TS

02o

t*NUMBER OF TESTS
16 64 2 56 C)'4 409r)6 C-3 8 4 6 t 5,

9, 2 .

w
U.

a-4-

Go
0

0

o. .5,.0002,.0001,.0002, 05

0 .5,0002,0002, 0002

FIGURE 5. SPECIFIC EXAMPLES OF LRROR PROI3AL ~ITY k\
(from Eq. (30) , see text for expLination Afp~~w r

l'he paramut+: i.-, always 0.1, .01, .001 anid .0001, except where 5

classes are present. in which c,.tse 0 k is 0.7, 0.1, .01, .01, .001, and

.000t. Showkn on the curves is the product 1kNk for each of the four or

five classes. For example, the curve marked 1,1,1,1 applies to these 4

cases

k k k Qk k k

o. 1 .05 20 0.1 .01 100
.01 .07 20 .01 .005 200
.001 .2. .001 .002 500
•0t;. .0001 .001 100

K)k Ok Nk

i .01 100 0.1 .002 500
.Il .001 1000 .01 .01 100

i .001 1000 .001 .01 100
• u,;0 .0 1 100 .0001 .002 500

Ease of detection, as reflected in Qk' depends largely on the number of
inputs A bug effects.

4.2 Ofptimum jL esting Strategy (in Section 4.1) Even though the
in pu ts--to§ -b ge ti -ar- --t -se e d --i-i----o-mi---ii - optimum strategy exists

in that the probabilities of testing various inputs can be chosen so as to
minimize P,. The asymptotic form expressed by Eq. (27) can be rewritten

M 13 -ts i
(t) = 1-1n)i2 1 Qie (32)

The quantities 13i and Qi are fix(,d by the problem, but the si can be chos-

en to minimize P at least insofar as they depend on the st (see Eq.(29)). e ,

The optimum s can easily be found for the special case where
Gji = 6ji, i.e., where each bug affects only one input.. The problem is to

minimize the asymptotic form (with some additional approximations):

N -sitf I P_1iqie
i+1

while keeping constant

N
1=g= :i s.i=1

The method of Lagrange multipliers gives the equation

0 af + x a Okqte Skt + x

ask ask

After eliminating A to insure that the si sum to unity, this gives
k 1 133

= 1 + I gn (ck qk) (33)

where

N
kn c I - lk n 1Oiqi

i=1

This solution shows that if a small number of tests are made, the h'ster
should favor the inputs most likely to be used and most likely to be in
error, but that if a large number of tests are to be made the tester should
select the inputs with an essentially uniform distribution. Even where a
non-uniform distribution of tests is indicated by Eq. (33), the tesLer should
distribute his tests more uniformly than the user because of the logarithm
(assuming the Ok do not deviate too markedly from uniformity).

The optimum testing strategy when aji is a delta functon (each bug

affecting only one input) can be quite misleading for the more general case.
It may be quite impossible to make the s i in Eq. (32) either independent of
i, or (even logarithmically) proportional to the Qi" Also, if one returns to
the more general Eq. (25) or Eq. (17) and attempts to choose the s. to
minimize Pe or Pe' it is found that the best value for s. is either zero or
one and that these values depend on an unrealistically detailed knowledge of
Gki" This is really the same as the optimum deterministic testing discussed
in Section 3.5.

5.0. Alternative Definitions of Error

The definition of error which was used above may not be suitable for
all purposes, but related probabilities can easily be calcuiated from the
equations given. Define two events as follows:

Eu is the event that a user employs the module once and encounters a

failure.

-23-

1 m is th, c,\enl Iha , i aester' ope rates tht. module t times and does not

encounter' a ladlure, i.e., the le.,twt ccepts the module. The subscript m
is mnemonic tor "mi-,ed, " sinc(bugs are a ways assumed to be present with
some probab.ilily, iand th,.elavui , m is the pr-obibility that the tester

has missed i'' hUgs, i.e., lrvrt,,lly accepted the modul,.

Ih i' l Irlt,'. It quantities which might be interpi etu d ,, the pfob, I-
ity ot u..r ,;or are tabulated below (Table I) for the various models "hich
have been .nalyzed. The effectiveness of the lesting process can bejudged by comparing Ihe tirSt with the last to . Note that the !,ls!

Pr{Eu EmI is alwaxws gr'euter than the second, Pr{L 0'. = Pe. This tact

might lead lo i' , -.. t ondition,,i probabilily, I 1'.i.n in some cases

where I1 is . ,; tster rejection and where there is a large proba-

bility of moduIt: buJ ..

One is temptd t,, regard the goal here as minimization of Pr{E u

regarding the avoidance of user error as of most importance to the user.
But remember this report seeks an optimum testin - method, and that this is
different trom and does not preclude previous y using an optimum program-
ming method. The latter will minimize user error, but will not generalTy
remove t.he need for testing in addition.

6.0 Conclusions and Comments

It is believed that defining what is meant by the probability of a pro-
gram error, and presenting a model which permits its exact calculation
(Eq. (15)) will provide the nucleus around which a theory of software reli-
ability can be built. The purpose is not merely to get a formula into which
numbers can be plugged to give a probability of error -- this does nothing
to reduce errors. Rather it is anticipated. that by classifying different
types of bugs, errors and test results, and by showing how they interact
programming systems can be improved and optimum testing procedures can
be found.

Most reports on program testing select the test data so as to traverse

each path in the program at least once. [3,41 The approach described in
this report might seem to be directed at selecting test data according to the
problem specification. A near-optimum strategy may be to select test data
randomly, since this seems to be a fairly efficient solution to the covering
problem, but to also make sure some test points are in various distinct data
domains (e.g., B2 - 4AC < 0) and to also make sure each program path is
traversed. In addition, it is desirable to concentrate test data at points
known to be more likely to be selected by the user. These requirements
are often contradictory, but optimum compromises are suggested by
Eq. (11), Section 3.5, and Section 4.2 above (provided the stated assump-

-24-

tions are met and the required parameters are available). Also formilas
derived give some idea of how many tests need to be made to achieve a
given reliability.

If further work is to be done along the lines of this report it is sug-
gested:

1) Data be gathered so as to verify the derived relations be-
tween the number of tests and the error probability, espec-
ially as in Section 4.0.

2) Another model can be developed in which a partial knowledge
of the bug-input matrix o is assumed. This would lead both
to a more easily applied optimum testing strntegy, and to a
method of sequential testing in which the last. test Points are
chosen according to the results of the first tesL.

7.0 References

M.L. Balinski, "Integer Programming: Methods, uses, :'.utati~ns,
Management Sci., Vol. i2, p. 253, November 1965.

2. Min-Wen Du, "A way to find a lower bound for a minimal solution of
the covering problem," IEEE Trans. on Computers, Vol. 21, p. 317,
1972.

3. J.C. Huang, "An approach to program testing," Comput. Surv.,
Vol. 7, p. 113, September 1975.

4. W. Miller and D.L. Spooner, "Automatic generation of floating-point
test data," IEEE Trans. on Software Engr., Vol. SE2, p. 223, Septem-
ber 1976.

-25-

-0 73 1 :3E -

0 - -

-. C7

] -.z CL

MISSION
Of

Rom Air Development Center
RAI)C ptan6 and executeA kezeaAch, devetopment,. te~.t and
.6eteeted oacqui~tion pJoguWm in suppoazt o6 Comm~and, ConWLot
Corimun.Zeation6 and Intettgene (01!) a*ctivitieA. Technicat
and enginee~ing Auppott wtthZn aJ~ea6 oj technicat competence
i4 p/oovided to ESP Ptoguz~m 0 jieeA (PO.6) and othe ESt'
etementA. The p'incipat tehnica miL.6on eAeA aue
co0mwicati0n6, e.LeettomagneLAic gui.dance and contwt,~ Aux-
veittance, o6 qtound and aw~apace object6, Ailtettigence. data
cottedion and handting, indo'mation Ap6tern technotogy,
iLonoapheAiuz potopagoat*on, h6otd 6tate. h.6cenceA, iaouwve
phys&icA and etectAoni.c tiabity, minnanabitity and
c2orpatibititLJ.

